

5th Challenge for Future Mathematicians Bogor, Oktober 27-30, 2018 Junior High School Category Individual Contest-SOLUTION

Time: 90 minutes

PART I.

1	C > B > M > F	9	901
2	256	10	$4\sqrt{21}$
3	5	11	43
4	7	12	$\frac{\pi}{64}$
5	25	13	24
6	1	14	CFFM
7	480	15	619737131179
8	65°	16	162 ways

PART II.

1.

$$AD = 12$$
, $BD = 9$, $DC = 16$

AE : EB = 4 : 3

AF:FC=3:4

 $\triangle ABD = \frac{1}{2} 9 \times 12 = 54$

$$\Delta BED = 3/7 \times 54 = 162/7$$

 $\Delta ACD = \frac{1}{2} 16 \times 12 = 96$,
 $\Delta DFC = \frac{4}{7} \times 96 = \frac{384}{7}$
Answer = $\frac{546}{7} = \frac{78}{8}$

Proposed Marking Scheme:

- Get the correct lengths of AD, BD and DC (1 point each, total 3 points)
- Get the correct ratios of AE: EB and AF: FC (1 point each, total 2 points)
- Get the correct area of ΔBED (2 points)
- Get the correct area of ΔDFC (2 points)
- Get the final answer (1 point)

Note: If correct answer only with no solutions, give 1 point.

2. Since GCD 2n + 9 and 7n + 5 is T.

then $2n+9=a\cdot T$ and $7n+5=b\cdot T$, which a and b are positive integers and co-prime. If we do subtract 2n+9 from 7n+5 then we get:

$$(7n+5)-(2n+9)=b\cdot T-a\cdot T\Rightarrow 5n-4=(b-a)\cdot T\Rightarrow n=\frac{bT-aT+4}{5}\ldots (I)$$

If we add 2n + 9 to 7n + 5 then we get:

$$(7n+5)+(2n+9) = b \cdot T + a \cdot T \Rightarrow 9n+14 = (b+a) \cdot T \dots (II)$$

Substitute value of n from (I) to (II)

9n + 14 = bT + aT

$$9\left(\frac{bT - aT + 4}{5}\right) + 14 = bT + AT$$

$$9bT - 9aT + 36 + 70 = 5bT + 5aT$$

$$14aT - 4bT = 106$$

$$T = \frac{106}{14a - 4b} = \frac{53}{7a - 2b}$$

Since T, a, and b are positive integers so 7a - 2b is a factor of 53, then the possible factors for T are 1 and 53, The sum of possible values of T is 1 + 53 = 54.

Proposed Marking Scheme:

- Set-up the general forms of 2n+9 and 7n+5 (1 point each, total of 2 points)
- Manipulate and get the general form of T (up to 2 points)
- Deduce that the only possible value of T is 1 and 53 (2 points each, total of 4 points)
- Get the final answer (2 points)

Note: If correct answer only with no solution, give 1 point.